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Abstract-The axial decay of stresses induced by self-equilibrated end loads in a multilayered
composite is investigated in the context of the plane problem. Here the multilayered composite is
composed of alternating layers of two dissimilar isotropic materials. By adopting appropriate
boundary conditions it is sufficient to consider a cell which consists of three layers. An Airy
stress function approach is utilized to obtain the characteristic equation where the non-zero roots
correspond to the decay rates. The dominant exponential decay rate, which corresponds to the
smallest positive real part of the roots is presented in the Dundurs ex, Pparallelogram.

1. INTRODUCTION

Saint-Venant's principle, which is often used to simplify complications in the vicinity of
applied loads, can be expressed as follows: "the difference between stress fields due to two
statically equivalent applied loads is negligible at distances which are greater than the
largest dimension of the area over which the loads are acting". This principle can also be
stated as, "the effect of the stress field due to a self-equilibrated load is insignificant at
distances away from the load". While this principle is in general valid for homogeneous
isotropic elastic material, it has been shown that the characteristic decay length for com
posite structures could be quite different. Excellent reviews of the Saint-Venant effect in
composite structures can be found in Horgan and Knowles (1983) and Horgan (1989).
While much work has been reported for the problem of sandwich strips, very few studies
have been carried out for multilayered composite structures.

The exact decay rates for plane problems of a sandwich strip composed of two
dissimilar isotropic materials with perfect interfacial bonding was investigated by Choi and
Horgan (1978). The exponential decay of end effects away from the loaded ends was
characterized in terms of complex eigenvalues, analogous to the well-known Fadle-Pap
kovich eigenvalues for the homogeneous isotropic strip. Finite element methods have been
applied to problems of sandwich strips by Rao and Valsarajan (1980), Okumura et al.
(1985) and Goetschel and Hu (1985). A recent investigation by Wijeyewickrema et at.
(1994) has exploited the results of Dundurs (1969) on the reduced dependence on elastic
constants for plane deformation of two phase composites. They give comprehensive results
for the symmetric and anti-symmetric cases, for various ratios of volume fractions in the iX,

f3 plane, where iX, f3 are the Dundurs constants. The effect of slipping interfaces on the
exponential decay of end effects in a sandwich strip was studied by Wijeyewickrema (1994).
The characteristic equations obtained for the symmetric and anti-symmetric cases were
shown to depend only on the single composite parameter iX, which agrees with the general
properties offrictionless contact along a straight interface (Dundurs, 1975). In the present
analysis the axial diffusion of self-equilibrated end loads in a multilayered composite is
investigated.

To the author's knowledge analytical studies of Saint-Venant end effects in mul
tilayered composites have not been carried out previously. The only attempt at studying
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Fig. 1. (a) Multi-layered composite composed of alternating layers of dissimilar material.

(b) Representative cell used in analysis.

this problem was the work reported by Dong and Goetschel (1982), who investigated the
end effects on laminated composite plates by means of the finite element method. Laminated
plates composed of an arbitrary number of bonded anisotropic elastic layers were studied
using this numerical approach.

In the next section the problem is formulated and the characteristic equation which
yields the decay rates is obtained in terms of the Dundurs constants. The dominant
exponential decay rate for the stresses is given by the real part of the eigenvalue with the
smallest, positive real part. The results are discussed in detail in section 3, where decay rates
of self-equilibrating end loads are plotted in the a, fJ plane.

2. FORMULATION OF THE PROBLEM

The semi-infinite multilayered composite shown schematically in Fig. lea) consists of
two dissimilar alternating layers of homogeneous isotropic material with elastic constants
f.li,V i (i = 1,2) and thickness 2ci (i = 1,2). Here f.li, Vi are the shear modulus and Poisson's
ratio, respectively. The layers are perfectly bonded at the interfaces. The volume fraction!
of material '1', is defined as the ratio of the thickness of the layer '1' to the thickness of the
unit cell,
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(1)

In the present analysis only symmetric deformations of the multilayered composite are
considered, i.e. each layer is assumed to be loaded by self-equilibrated loads which are
symmetric about its own mid-plane. Hence, due to considerations of symmetry, it is
sufficient to consider a representative cell which consists of three layers, as shown in Fig.
l(b). Since y = 0 is a plane of symmetry, in what follows only the upper half of the
representative cell y ;:;;: 0 is considered. The displacements and stresses in each layer can be
obtained by means of the Fadle-Papkovich functions (Timoshenko and Goodier, 1970, p.
62), which exhibit exponential decay in the axial direction, and are given in the Appendix.

The stresses in the two dissimilar layers are of the form

(2)

and

(3)

where the superscripts and subscripts 1,2 refer to material 1 and material 2, respectively.
The objective of this analysis is to investigate the effect of different material combinations
on the decay rates 'hlc) and Y2/c2'

The perfect bonding assumed at the interface results in the continuity conditions

(J;y(x, C2) = (J;y(x, C2), (J~y(x, C2) = (J~y(x, C2), 0 ~ x < 00

u~ (x, C2) = u~ (x, C2), u; (x, C2) = u;(x, C2), 0 ~ x < 00 (4)

and the boundary conditions on the external surface of the representative cell are taken as

(5)

due to the symmetric deformation of the multi-layered composite.
The interfacial conditions (4) and the periodicity conditions on the external surface of

the representative cell [eqn (5)], yield a system of six equations for the six unknown
coefficients associated with the displacement and stress fields. The determinant of the
coefficients, which characterizes the exponential decay rates in the multi-layered composite,
is obtained as

,1.s(y; rt., f3,f) = rt.2[al +y2]+ 2rt.{ - f3[fya2+ (1-f)ya3]+ [fya2- (1-f)ya3])

+ {f32 a2a3 - 2f3[fya2- (1-f)ya3] -a4}, (6)

where

Here,

a3 = sin 2fy +2fy,
• 2

a4 = sIn y. (7)

rcK) +1)-(K2+ l ) rcK I -1)-(K2- 1)
rt. = rcK I + 1)+(K2 + 1)' f3 = rcKI + 1)+(K2+ 1)'

(8)

are the constants introduced by Dundurs (1969), where r = /121/11, Ki = 3-4v i , for plane
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Fig. 2. Roots of L\.,(1'; (x, f3,J) = 0, which correspond to the smallest, positive real part of l' = ~+ il1,
forj= 0.2.

ex

strain and K;= (3-v;)/(1 +v;), (i = 1,2) for generalized plane stress. Under the usual physi
cal assumptions of f..L;> 0, and 0 ~ v;~ 1/2, the admissible values of rx and f3 are restricted
to a parallelogram in the rx, f3 plane, with -1 ~ rx ~ 1 and -1/2 ~ f3 ~ 1/2.

The eigenvalue y introduced in eqn (6) to compare the exponential decay rate yJ!c\
with that for a homogeneous unit cell of the same total thickness is defined by

The application of interfacial conditions given by eqn (4) results in

Yl Y2
-==-

(9)

(10)

It is noted that As has a complicated structure in the variables! and Y, but is simply
quadratic in the material constants rx and f3.

3. RESULTS AND DISCUSSION

The roots of the transcendental equation As(Y ;rx, f3,f) = 0 are analyzed here to obtain
the exponential decay rate for the stresses. It is noted that the dominant decay rate for the
stresses is the real part of the eigenvalue y with the smallest, positive real part. The roots of
As(Y ;rx, f3,f) = 0 are determined numerically and plotted in Figs 2-6, for! = 0.2, 0.4, 0.5,
0.6 and 0.8 in the rx, f3 parallelogram. For a given volume fractionf, when y is real, a root
is chosen and its locus is plotted in the rx, f3 plane by solving the quadratic in rx for each f3
in the range -1/2 ~ f3 ~ 1/2. When y is complex we express y as y = ~ + il1 and write

As(~ + il1; rx, f3,f) = M(~, 11; rx, f3,f) + iA~(~, 11; rx, f3,f) (11)

and solve the two quadratics in rx to obtain ~,11 curves.
In general these figures are obtained by combining plots of complex roots and real

roots. This is illustrated for the volume fraction! = 0.6 in Fig. 5(a-e). The complex roots
y = ~+ il1 are plotted as contours ~ = constant, 11 = constant in Fig. 5(a) and the real roots
yare plotted as contours y = constant in Fig. 5(b). In Fig. 5(a), the thick line corresponds
to the curve 11 = 0 and the lower end point of the curve ~ = n has an imaginary part 11 = o.
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Fig. 3. Roots of .i,(Y; ex, f3,f) = 0, which correspond to the smallest, positive real part of Y = ~+ 11),
for1= 0.4.
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Fig. 4. Roots of .i,(y; ex, f3,j) = 0, which correspond to the smallest, positive real part of y = ~+11),
for1= 0.5.

a

Figures 5(a), and 5(b) are combined to get Fig. 5(c) which represent the roots with the
smallest, positive real part of y. The set of complex roots belonging to the family with
~ < 4.0 has a definite pattern which is easily observed from Fig. 5(a), while the sets of
complex roots belonging to other families with ~ > 4.0 do not show readily recognizable
patterns. Thus note, that when ~ > 4.0, the '1 = constant curves may intersect each other
and the ~ = constant curves may intersect the '1 = 0 curve.

From Figs 2 and 3 it is observed that, whenj < 0.5, the decay rates always correspond
to real roots to the left of the line y = 1C and in the vicinity of rx = 1. For the volume fraction
j = 0.5, no complex roots were found and the decay rates correspond to real roots in the
entire rx, f3 parallelogram (see Fig. 4). This is expected, since when! = 0.5 eqn (6) yields

which defines real roots for constant y along the straight lines
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a = [fJ(sin y+y) ± sin y]/y. (13)

When f> 0.5, Figs 5 and 6 indicate that the decay rates correspond always to real
roots to the right of the line y = n and in the vicinity of a = - 1. When the alternating
layers consist of identical material, i.e. when a = fJ = 0, the characteristic equation is
sin2y = 0, and is independent of the volume fraction f Thus in Figs 2-6 the curve y = n
goes through the origin.

Due to the symmetric nature of the problem, the results for a particular volume fraction
f can be obtained from the results for the volume fraction (1 -f) by reflection about the
origin in the a, fJ plane. This is because the volume fraction f of material"1" corresponds
to a volume fraction (I-f) of material "2", and when the materials in the unit cell of Fig.
1(b) are interchanged, the constants a and fJ have to be replaced by - a and - fJ, respectively.
This feature can be seen by comparing for instance, Fig. 2 with Fig. 6.
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Fig. 5. Roots of ~,(y; ()(, f3,f) = 0, for f = 0.6. (a) Complex roots y = ~+ i1), (b) real roots, and
(c) roots which correspond to the smallest, positive real part of y.
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Fig. 5.-Continued.
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Fig. 6. Roots of 8,(y; (x, (J,j) = 0, which correspond to the smallest, positive real part of y = ~+ if!,
forf= 0.8.
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4. CONCLUDING REMARKS

The ideas of Dundurs regarding the reduced dependence on the elastic constants for
two phase composites have been used to represent the decay of end effects in multilayered
composites in an elegant manner. The results are presented in plots which are useful to
designers. The analysis also serves as a benchmark for researchers using numerical methods.
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APPENDIX

The stresses and displacements in the outer layers are given by

[ (YIY) YIY· (YIY)] }+ 2 cos ~ - ~ sm ~ D 1 , (AI)

(A2)

(A3)

(A4)

(AS)

where AI> Bl> CI> D 1 are arbitrary constants.
The stresses and displacements in the inner layer for symmetric deformation of the inner layer can be expressed

as

(A6)

(A7)
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a;y{x,y) = eHy,x/,,)] (~) {- sin (Y;:)A2+ [Y;: cos (Y;:) +sin (Y;:) JD2}' (A8)

4fl2U;(X, y) = e[ -("~xl',)] {2 cos (Y;:) A2+ [ - (1 + K2) cos (Y;:) +2 Y;: sin (Y;:)JD2} , (A9)

4fl2U;(X,y) = eH ,,'/")] {2 sin (Y;:)A 2+ [ -2Y;: cos (Y;:) +(K2 -1) sin (Y;:) JD 2}, (AIO)

where A" B2, C2, D2are arbitrary constants.


